5. Example of usage

To give the user an idea of what a complete waveinput.dat file may look like, a set of examples are given below. If the input description was confusing and overwhelming, these examples should hopefully make it easier to see the bigger picture.

5.1. Irregular wave examples

5.1.1. Long-crested irregular focus wave group

Description:

In this example a focused irregular wave is generated using 28 frequency components. The wave group we are about to generate is uni-directional and all phase values have been set to zero, such that the focus point will be at x=y=t=0. To move the focus point, the keyword [wave reference point] can be specified using the tags time, x and y to move it. In this case we set time = 12 sec, which implies that the max crest of 20mm will occur after 12 seconds of simulation at position x=y=0. normalize is enabled meaning that the listed amplitudes in [irregular wave components] will be normalized such that the sum(A) = 1. The amplitude of the wave at the point of focus is controlled by the parameter amplify. In this case the linear amplitude at point of focus will be 20mm. Linear wave theory (superposition) is used in this case, since the specified wave has a low steepness. For steeper waves, it is generally always recommended to use higher order theory, since linear wave theory will simply be too coarse.

@v213
# Long crested wave example

[wave type]
# WAVETYPE
irregular

[general input data]
depth 1.2
mtheta 0.0
normalize 1
amplify 0.020

[wave reference point]
# for focused waves this will correspond to the focus point in time and space
time 12.0
x 0.0
y 0.0

[irregular wave components]
nfreq 28
ndir 1
#   OMEGA      A          K          Phase
        5.2033     0.0369     2.7670     0.0000
        5.3014     0.0356     2.8708     0.0000
        5.3996     0.0343     2.9767     0.0000
        5.4978     0.0331     3.0849     0.0000
        5.5960     0.0319     3.1951     0.0000
        5.6941     0.0308     3.3075     0.0000
        5.7923     0.0298     3.4219     0.0000
        5.8905     0.0288     3.5384     0.0000
        5.9887     0.0279     3.6570     0.0000
        6.0868     0.0270     3.7776     0.0000
        6.1850     0.0261     3.9002     0.0000
        6.2832     0.0253     4.0248     0.0000
        6.3814     0.0246     4.1514     0.0000
        6.4795     0.0238     4.2800     0.0000
        6.5777     0.0231     4.4106     0.0000
        6.6759     0.0224     4.5432     0.0000
        6.7741     0.0218     4.6778     0.0000
        6.8722     0.0212     4.8143     0.0000
        6.9704     0.0206     4.9528     0.0000
        7.0686     0.0200     5.0933     0.0000
        7.1668     0.0195     5.2358     0.0000
        7.2649     0.0189     5.3802     0.0000
        7.3631     0.0184     5.5266     0.0000
        7.4613     0.0180     5.6749     0.0000
        7.5595     0.0175     5.8252     0.0000
        7.6576     0.0171     5.9775     0.0000
        7.7558     0.0166     6.1318     0.0000
        7.8540     0.0162     6.2880     0.0000
# DIRS
        0.00000     1.0

5.1.2. Short-crested irregular focused wave

Description:

In this example, the focused wave presented previously is extended from long crested to short crested. The amplitude is increased to 70mm such that the wave will now be quite nonlinear. Therefore we switch to second order wave theory by specifying [second order]. A spreading function is specified using 19 directional component, with the range -pi/4 to pi/4. To speed up the computation during runtime we specify the use of [lsgrid] for interpolation of kinematics along the boundary. The boundary in this case is 4.8m upwave from the focus point at (x=y=0). Further more, since the specified focused wave is symmetric along the x-axis, it is sufficient to simulate only half the domain, using a symmertry condition along the domain border at y=0.

The CFD tank for this example was initialized with water at rest (swl = 0m). Idealy, we would tell CFDwavemaker to only calculate wave kinematics in the yz-plane along the inflow boundary. This could be done by setting dx = 1 and bounds to -4.8 -4.8 0. 10. However many CFD solvers use one or two layers of ghost cells along the boundaries and may ask for kinematics at positions on the outside of the boundary. To account for this we deliberately set the bounds for which kinematics are calculated in the range of -5.0 to -4.8m using 4 interpolation points in the x-direction. Finally, to view the results that are generated by CFDwavemaker (which is generally recommended for QA purposes), we tell it to dump vtu files (using the keyword [vtk output] for every time step the interpolation grid is updated.

@v213
# Wavedata CFDwavemaker

[wave type]
# WAVETYPE
irregular

[general input data]
depth 1.2
mtheta 0.0
swl 0.0
normalize 1
amplify 0.070

[second order]
bandwidth auto

[wave reference point]
# for focused waves this will correspond to the focus point in time and space
time 12.0
x 0.0
y 0.0

[ramps]
#ramptype    enable  rampup_start rampup_end
time_rampup     0       0.0000       0.5
time_rampdown   0       0.0000       1.0
x_rampup        0     -11.0000     -10.0
x_rampdown      0      10.0000      12.0
y_rampup        0     -11.0000     -10.0
y_rampdown      1      10.0000      12.0

[irregular wave components]
nfreq 28
ndir 19
#   OMEGA      A          K          Phase
        5.2033     0.0369     2.7670     0.0000
        5.3014     0.0356     2.8708     0.0000
        5.3996     0.0343     2.9767     0.0000
        5.4978     0.0331     3.0849     0.0000
        5.5960     0.0319     3.1951     0.0000
        5.6941     0.0308     3.3075     0.0000
        5.7923     0.0298     3.4219     0.0000
        5.8905     0.0288     3.5384     0.0000
        5.9887     0.0279     3.6570     0.0000
        6.0868     0.0270     3.7776     0.0000
        6.1850     0.0261     3.9002     0.0000
        6.2832     0.0253     4.0248     0.0000
        6.3814     0.0246     4.1514     0.0000
        6.4795     0.0238     4.2800     0.0000
        6.5777     0.0231     4.4106     0.0000
        6.6759     0.0224     4.5432     0.0000
        6.7741     0.0218     4.6778     0.0000
        6.8722     0.0212     4.8143     0.0000
        6.9704     0.0206     4.9528     0.0000
        7.0686     0.0200     5.0933     0.0000
        7.1668     0.0195     5.2358     0.0000
        7.2649     0.0189     5.3802     0.0000
        7.3631     0.0184     5.5266     0.0000
        7.4613     0.0180     5.6749     0.0000
        7.5595     0.0175     5.8252     0.0000
        7.6576     0.0171     5.9775     0.0000
        7.7558     0.0166     6.1318     0.0000
        7.8540     0.0162     6.2880     0.0000
# DIRS
        -0.7854     0.042843
        -0.69813     0.045853
        -0.61087     0.048652
        -0.5236     0.051192
        -0.43633     0.053426
        -0.34907     0.055313
        -0.2618     0.056819
        -0.17453     0.057916
        -0.087266     0.058583
        0.00000     0.058806
        0.087266     0.058583
        0.17453     0.057916
        0.2618     0.056819
        0.34907     0.055313
        0.43633     0.053426
        0.5236     0.051192
        0.61087     0.048652
        0.69813     0.045853
        0.7854     0.042843

[lsgrid]
# XMIN XMAX YMIN YMAX
bounds -5.0 -4.8 0. 10.0
nx 4
ny 60
nl 15
t0 0.0
dt 0.1

[vtk output]
storage_path ./vtk/
filename kin

5.1.3. Short-crested irregular random wave

Description:

The last irregular example is a large random 3D wave event, initalized at t=0. The frequency components are set such that the sea state is periodic in x- and y-direction. Again a lagrangian stretched grid ([lsgrid]) is applied to speed up initialization. a resolution of dx,dy = 200 is used to define the interpolation grid in horizontal direction. The crest event of interest is set to occur after 50 seconds of simulation.

@v213
# Short-crested irregular wave, example

to[wave type]
# WAVETYPE
irregular

[general input data]
depth 88.00
mtheta 0.0000

[second order]
# use default parameters

[wave reference point]
time 50.00
x     0.00
y     0.00

[irregular wave components]
nfreq 200
ndir 0
# OMEGA [rad/s]    A[m]           K             Phase[rad]     theta[rad]
        0.80684460     0.09098686     0.06636591    22.09105101    -0.51238946
        0.57527858     0.08989138     0.03410555    -8.15520380    -1.01219701
        0.59315305     0.20143761     0.03615181    -8.35009702    -0.92729522
        0.71493207     0.09704876     0.05213889    11.00239563    -0.58800260
        0.73560378     0.15043259     0.05518335    14.76881712    -0.55165498
        0.75610843     0.09650070     0.05829305    18.92708992    -0.51914611
        0.77640398     0.10681407     0.06145808    24.37031505    -0.48995733
        0.92931426     0.08134978     0.08803542    48.50152435    -0.33473684
        0.59003036     0.13179557     0.03578847    -2.44283250    -0.78539816
        0.67949822     0.08673909     0.04713620    13.61795823    -0.56672922
        0.70159595     0.12872640     0.05022371    13.11161767    -0.52807445
        0.72341755     0.09335832     0.05337751    21.28711895    -0.49394137
        0.74492876     0.09124896     0.05658654    19.10538656    -0.46364761
        0.76610938     0.14602694     0.05984190    24.25731290    -0.43662716
        0.92338065     0.08982607     0.08691486    53.08713349    -0.29544084
        0.56831292     0.14909982     0.03333033     1.03802376    -0.70862627
        0.59315305     0.13573177     0.03615181     6.33394770    -0.64350111
        0.64208478     0.20180890     0.04215990    14.81790339    -0.54041950
        0.68937444     0.10420996     0.04850275    21.12983865    -0.46364761
        0.71232547     0.13013337     0.05176152    22.10544051    -0.43240778
        0.75683615     0.14954698     0.05840504    28.83959676    -0.38050638
        0.79955776     0.14991898     0.06517361    33.77019573    -0.33929261
        0.82028164     0.09363949     0.06859324    35.30440687    -0.32175055
        0.46286551     0.09979804     0.02314846    -1.12148303    -0.89605538
        0.51930565     0.12065759     0.02823547     0.46959009    -0.69473828
        0.54759216     0.09346431     0.03109897     3.64479264    -0.62024949
        0.57527858     0.23580010     0.03410555     6.60450404    -0.55859932
        0.60221880     0.13918393     0.03722057    12.48810274    -0.50709850
        0.62838280     0.08980944     0.04041896    15.65714562    -0.46364761
        0.74871173     0.15896517     0.05716104    30.50365836    -0.32175055
        0.77096525     0.10563210     0.06060148    37.56151878    -0.30288487
        0.81393849     0.09999319     0.06753716    40.07111306    -0.27094685
        0.89449376     0.09482638     0.08156221    56.04201999    -0.22347660
        0.39528979     0.13456842     0.01807591    -1.14796713    -0.92729522
        0.42863755     0.34684231     0.02045055     2.23318225    -0.78539816
        0.46286551     0.29379860     0.02314846     0.49295359    -0.67474094
        0.49637742     0.60488473     0.02606944     6.52514999    -0.58800260
        0.52853518     0.19518107     0.02914652     7.56674679    -0.51914611
        0.55920020     0.21318198     0.03233517    15.05457653    -0.46364761
        0.58844898     0.36812428     0.03560541    14.47036946    -0.41822433
        0.61642722     0.10810017     0.03893670    17.07895374    -0.38050638
        0.66915771     0.30798981     0.04572883    25.37828169    -0.32175055
        0.69415346     0.11970920     0.04917178    31.18914356    -0.29849893
        0.71836302     0.09232121     0.05263784    28.41662708    -0.27829966
        0.74185987     0.14303032     0.05612271    35.94006288    -0.26060239
        0.76470474     0.12198513     0.05962310    40.35719145    -0.24497866
        0.78694876     0.09250516     0.06313643    38.85493211    -0.23109067
        0.94757522     0.09804928     0.09152908    63.25813893    -0.15865526
        0.35229473     0.39580676     0.01533792     2.41303244    -0.78539816
        0.39528979     0.51722717     0.01807591     3.59024874    -0.64350111
        0.43694365     0.57436187     0.02107995     4.69247313    -0.54041950
        0.47590833     0.38649048     0.02425137     7.69715809    -0.46364761
        0.51202208     0.60868071     0.02753240    13.22258629    -0.40489179
        0.54557845     0.41240763     0.03088812    17.32911178    -0.35877067
        0.57697831     0.24408321     0.03429662    16.29409173    -0.32175055
        0.63472639     0.15786941     0.04121941    23.02217476    -0.26625205
        0.68743396     0.08650849     0.04823254    29.54858195    -0.22679885
        0.73639466     0.12902820     0.05530164    35.38182388    -0.19739556
        0.78238814     0.15075502     0.06240771    45.96873670    -0.17467220
        0.82592276     0.14756403     0.06953940    49.17762331    -0.15660188
        0.86735951     0.11331180     0.07668958    59.17340449    -0.14189705
        0.20874135     0.11636035     0.00808379    -2.86391205    -1.10714872
        0.25601302     0.28752201     0.01022528     0.42434227    -0.78539816
        0.31170835     0.16650498     0.01303472     0.77835264    -0.58800260
        0.36588901     1.30157108     0.01616758     7.10180882    -0.46364761
        0.41524546     1.42221213     0.01946835     7.04756381    -0.38050638
        0.45942309     0.25727916     0.02286441    15.11827779    -0.32175055
        0.49909445     0.13649680     0.02631892    16.54310809    -0.27829966
        0.53513229     0.63760089     0.02981155    17.08802112    -0.24497866
        0.56831292     0.08769026     0.03333033    22.79427262    -0.21866895
        0.59924534     0.34375363     0.03686776    25.48986694    -0.19739556
        0.62838280     0.24935999     0.04041896    28.25001235    -0.17985350
        0.65605630     0.17894604     0.04398058    30.66938384    -0.16514868
        0.73241412     0.14448520     0.05470762    43.76531616    -0.13255153
        0.75610843     0.12259364     0.05829305    46.65681002    -0.12435499
        0.77908075     0.13043243     0.06188194    44.30325398    -0.11710874
        0.84428359     0.10906569     0.07266425    55.80003333    -0.09966865
        0.09774301     0.18759704     0.00361518    -1.18923504    -1.57079633
        0.13657139     0.16566396     0.00511264     2.38774000    -0.78539816
        0.20874135     0.21952946     0.00808379     5.88969665    -0.46364761
        0.28080869     0.38616284     0.01143221     3.56357400    -0.32175055
        0.34500601     1.20062822     0.01490577     6.93428338    -0.24497866
        0.40053427     2.51602091     0.01843388    12.33488898    -0.19739556
        0.44860110     0.10319715     0.02199029    16.99507246    -0.16514868
        0.49079824     0.37439316     0.02556319    19.84778021    -0.14189705
        0.52853518     0.50805288     0.02914652    24.42468632    -0.12435499
        0.56290243     0.58198718     0.03273686    27.01940533    -0.11065722
        0.59469488     0.33841702     0.03633212    30.29625258    -0.09966865
        0.62447759     0.35490694     0.03993098    29.45114699    -0.09065989
        0.65265033     0.19405249     0.04353255    35.30675265    -0.08314123
        0.67949822     0.14387471     0.04713620    39.19974194    -0.07677189
        0.70522818     0.08413218     0.05074149    38.63472082    -0.07130746
        0.75391245     0.09744969     0.05795577    45.99922007    -0.06241881
        0.77707579     0.10338095     0.06156432    50.58050459    -0.05875582
        0.18875711     0.13519828     0.00723036     5.25487523    -0.00000000
        0.26892196     0.89483800     0.01084554     8.96487578    -0.00000000
        0.33734580     1.35610007     0.01446073    13.72114465    -0.00000000
        0.39528979     1.09583956     0.01807591    12.86471600    -0.00000000
        0.44481461     0.71764111     0.02169109    19.80064211    -0.00000000
        0.48793224     0.43438010     0.02530627    19.19008302    -0.00000000
        0.52627616     0.36276019     0.02892145    23.98331112    -0.00000000
        0.56106115     0.85672186     0.03253663    30.99954009    -0.00000000
        0.59315305     0.22696195     0.03615181    30.13513341    -0.00000000
        0.62315856     0.27312478     0.03976700    36.32949287    -0.00000000
        0.65150259     0.38510528     0.04338218    36.23477656    -0.00000000
        0.70432549     0.11544412     0.05061254    44.67660309    -0.00000000
        0.75317613     0.09347957     0.05784290    51.01818619    -0.00000000
        0.79894142     0.13793047     0.06507327    57.04446261    -0.00000000
        0.09774301     0.18759704     0.00361518     1.18923504     1.57079633
        0.13657139     0.24180708     0.00511264     4.54020402     0.78539816
        0.20874135     0.34616249     0.00808379     7.62773976     0.46364761
        0.28080869     0.17779331     0.01143221    12.20177429     0.32175055
        0.34500601     0.67642894     0.01490577    13.03793827     0.24497866
        0.40053427     1.21920259     0.01843388    19.74895992     0.19739556
        0.44860110     0.66783033     0.02199029    24.91477548     0.16514868
        0.49079824     0.27761724     0.02556319    27.06847903     0.14189705
        0.52853518     0.51467469     0.02914652    30.08320452     0.12435499
        0.56290243     0.29320935     0.03273686    29.96763620     0.11065722
        0.59469488     0.20078744     0.03633212    31.89246549     0.09966865
        0.62447759     0.25016277     0.03993098    37.28870243     0.09065989
        0.65265033     0.14878305     0.04353255    39.05299074     0.08314123
        0.67949822     0.26387242     0.04713620    43.88942822     0.07677189
        0.70522818     0.08131803     0.05074149    45.33381199     0.07130746
        0.72999386     0.09443696     0.05434809    47.23771441     0.06656816
        0.75391245     0.10031883     0.05795577    55.81282803     0.06241881
        0.79955776     0.10076085     0.06517361    60.43898847     0.05549851
        0.84271132     0.09309535     0.07239395    66.84946990     0.04995840
        0.86347783     0.10114483     0.07600484    67.16931376     0.04758310
        0.25601302     0.09214155     0.01022528    12.59001344     0.78539816
        0.31170835     0.22496999     0.01303472    13.64296871     0.58800260
        0.36588901     0.63784037     0.01616758    17.07445597     0.46364761
        0.41524546     0.83406201     0.01946835    24.61973084     0.38050638
        0.45942309     0.23994725     0.02286441    23.28894706     0.32175055
        0.49909445     0.24364234     0.02631892    29.76444335     0.27829966
        0.53513229     0.40200400     0.02981155    30.52102540     0.24497866
        0.56831292     0.58429514     0.03333033    34.47462219     0.21866895
        0.59924534     0.10518281     0.03686776    36.45061463     0.19739556
        0.62838280     0.14993786     0.04041896    42.29889427     0.17985350
        0.65605630     0.14493109     0.04398058    46.64618142     0.16514868
        0.68250754     0.15054722     0.04755029    45.09734433     0.15264933
        0.70791522     0.11589506     0.05112639    52.50506047     0.14189705
        0.75610843     0.20639592     0.05829305    58.69501265     0.12435499
        0.77908075     0.09448769     0.06188194    60.10176009     0.11710874
        0.82311674     0.09749486     0.06906794    67.50694473     0.10487694
        0.35229473     0.08197143     0.01533792    19.39685929     0.78539816
        0.39528979     0.56395429     0.01807591    20.88794475     0.64350111
        0.43694365     0.61187838     0.02107995    27.45282294     0.54041950
        0.47590833     0.15748106     0.02425137    28.18523875     0.46364761
        0.51202208     0.14761350     0.02753240    29.38674176     0.40489179
        0.54557845     0.31585573     0.03088812    34.70056266     0.35877067
        0.57697831     0.09370791     0.03429662    37.84658838     0.32175055
        0.60659316     0.33263167     0.03774360    42.86578993     0.29145679
        0.63472639     0.10022268     0.04121941    41.24369147     0.26625205
        0.66161343     0.22516662     0.04471732    44.84011971     0.24497866
        0.68743396     0.20295680     0.04823254    48.94096877     0.22679885
        0.71232547     0.08664334     0.05176152    53.81675954     0.21109333
        0.73639466     0.22826119     0.05530164    58.30684722     0.19739556
        0.75972605     0.20271304     0.05885089    59.47388726     0.18534795
        0.78238814     0.10267079     0.06240771    60.44217986     0.17467220
        0.80443770     0.17521403     0.06597087    63.11907596     0.16514868
        0.84688467     0.14277383     0.07311252    70.73869789     0.14888995
        0.86735951     0.11766328     0.07668958    76.72328818     0.14189705
        0.88737918     0.09779885     0.08027005    80.21170919     0.13552771
        0.42863755     0.27263790     0.02045055    23.98627064     0.78539816
        0.46286551     0.28003072     0.02314846    29.78063790     0.67474094
        0.55920020     0.13249162     0.03233517    37.34537388     0.46364761
        0.58844898     0.15470656     0.03560541    43.58689731     0.41822433
        0.61642722     0.23390224     0.03893670    42.08822915     0.38050638
        0.66915771     0.32708331     0.04572883    52.46940253     0.32175055
        0.69415346     0.10479065     0.04917178    54.10763830     0.29849893
        0.71836302     0.17501783     0.05263784    55.71332011     0.27829966
        0.76470474     0.12625583     0.05962310    61.38264093     0.24497866
        0.78694876     0.11097823     0.06313643    65.29757112     0.23109067
        0.80863569     0.10327471     0.06666065    71.08978319     0.21866895
        0.82980366     0.10439765     0.07019413    72.20208455     0.20749623
        0.46286551     0.13140904     0.02314846    27.28467581     0.89605538
        0.49079824     0.19284512     0.02556319    33.06783155     0.78539816
        0.51930565     0.18640608     0.02823547    32.84459187     0.69473828
        0.54759216     0.10677480     0.03109897    36.70632468     0.62024949
        0.57527858     0.08808513     0.03410555    40.40596708     0.55859932
        0.60221880     0.15925774     0.03722057    45.49024956     0.50709850
        0.62838280     0.23254109     0.04041896    46.18808287     0.46364761
        0.67848591     0.12106816     0.04699736    55.20214440     0.39479112
        0.70250941     0.10466058     0.05035365    59.19068357     0.36717383
        0.74871173     0.12360594     0.05716104    60.77346542     0.32175055
        0.81393849     0.08550695     0.06753716    75.04767291     0.27094685
        0.51930565     0.12859193     0.02823547    34.84944988     0.87605805
        0.54354051     0.13499880     0.03067583    35.76793009     0.78539816
        0.61779215     0.13205459     0.03910417    46.53132171     0.58800260
        0.71232547     0.08793377     0.05176152    56.69759669     0.43240778
        0.75683615     0.08372675     0.05840504    66.54734063     0.38050638
        0.54759216     0.13529305     0.03109897    40.16036461     0.95054684
        0.63472639     0.09255731     0.04121941    49.58248443     0.66104317
        0.65717947     0.09367514     0.04412891    52.07049263     0.61072596
        0.76610938     0.08904058     0.05984190    69.58065106     0.43662716
        0.82759271     0.12183432     0.06982075    78.55677263     0.37089129
        0.80684460     0.08340232     0.06636591    77.86075915     0.51238946
        0.88192863     0.10535046     0.07928712    93.13534179     0.42285393
        0.91814400     0.13433347     0.08593188    96.71537171     0.38831872
        0.81799214     0.09781100     0.06821111    84.09139466     0.55859932

[lsgrid]
# XMIN XMAX YMIN YMAX
bounds -882.6850 872.6850 -882.6850 882.6850
nx 200
ny 200
nl 15
t0 0.0
dt 0.5
ignore_subdomain -875. 900. -875. 875.
ignore_at_init 0

[vtk output]
storage_path ./vtk/
filename kin

5.2. Regular wave examples

5.2.1. Stokes 5th order regular wave

Description:

A regular stokes 5th order wave, propagated from still water using a linear rampup from time 0.0 to time 2.0 sec.

@v213
# Wavedata CFDwavemaker2

[wave type]
regular

[general input data]
depth 88.00
mtheta 0.0000

[stokes wave properties]
#mandatory properties for stokes wave
wave_length 300.
wave_height 20.

[ramps]
# ramp_type    enable       rampup_start rampup_end
time_rampup    1            0.0000       2.0
# you do not need to specify all ramps, only the once you need.

5.3. Spectral-Wave-Data (swd) example

5.3.1. Example 1: SWD wave1

Description:

  • Irregular long crested 5th order HOSM wave simulation

  • propagated in from the side into still water

To run this example the swd file hosm_out.swd is required.

@v213
# CFDwavemaker SWD example 1: irregular 5th order long crested wave

[wave type]
swd

[general input data]
depth 300.00
mtheta 0.0000

[swd wave properties]
swdfile  hosm_out.swd

[ramps]
# ramp_type    enable       rampup_start rampup_end
time_rampup    1            0.0000       2.0

[lsgrid]
#         XMIN   XMAX   YMIN   YMAX
bounds  -200.00 -200.00 0.00 0.00
nx  1
ny  1
nl  16
t0  0.0
dt  0.5
stretch_params 0.7   1.5